Source code for agntcy_acp.acp_v0.models.value_run_result_update

# Copyright AGNTCY Contributors (https://github.com/agntcy)
# SPDX-License-Identifier: Apache-2.0
# coding: utf-8

"""
Agent Connect Protocol

No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator)

The version of the OpenAPI document: 0.2.2
Generated by OpenAPI Generator (https://openapi-generator.tech)

Do not edit the class manually.
"""  # noqa: E501

from __future__ import annotations

import json
import pprint
import re  # noqa: F401
from typing import Any, ClassVar, Dict, List, Optional, Set

from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
from typing_extensions import Self

from agntcy_acp.acp_v0.models.message import Message
from agntcy_acp.acp_v0.models.run_status import RunStatus


[docs] class ValueRunResultUpdate(BaseModel): """ Partial result provided as value through streaming. """ # noqa: E501 type: StrictStr run_id: StrictStr = Field(description="The ID of the run.") status: RunStatus = Field( description="Status of the Run when this result was generated. This is particularly useful when this data structure is used for streaming results. As the server can indicate an interrupt or an error condition while streaming the result." ) values: Dict[str, Any] = Field( description="The output of the agent. The schema is described in agent ACP descriptor under 'spec.output'." ) messages: Optional[List[Message]] = Field( default=None, description="Stream of messages returned by the run." ) __properties: ClassVar[List[str]] = [ "type", "run_id", "status", "values", "messages", ]
[docs] @field_validator("type") def type_validate_enum(cls, value): """Validates the enum""" if value not in set(["values"]): raise ValueError("must be one of enum values ('values')") return value
model_config = ConfigDict( populate_by_name=True, validate_assignment=True, protected_namespaces=(), )
[docs] def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True))
[docs] def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return self.model_dump_json(by_alias=True, exclude_unset=True)
[docs] @classmethod def from_json(cls, json_str: str) -> Optional[Self]: """Create an instance of ValueRunResultUpdate from a JSON string""" return cls.from_dict(json.loads(json_str))
[docs] def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ excluded_fields: Set[str] = set([]) _dict = self.model_dump( by_alias=True, exclude=excluded_fields, exclude_none=True, ) # override the default output from pydantic by calling `to_dict()` of each item in messages (list) _items = [] if self.messages: for _item_messages in self.messages: if _item_messages: _items.append(_item_messages.to_dict()) _dict["messages"] = _items return _dict
[docs] @classmethod def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: """Create an instance of ValueRunResultUpdate from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate( { "type": obj.get("type"), "run_id": obj.get("run_id"), "status": obj.get("status"), "values": obj.get("values"), "messages": [Message.from_dict(_item) for _item in obj["messages"]] if obj.get("messages") is not None else None, } ) return _obj